Sains Malaysiana 53(5)(2024): 1167-1183

http://doi.org/10.17576/jsm-2024-5305-15

 

Adsorption of Heavy Metal from Wastewater by Bioabsorbent Modified Azolla microphylla and Lemna minor

(Penjerapan Logam Berat daripada Air Sisa oleh Penyerap Bio Azolla microphylla dan Lemna minor Terubah Suai)

 

NASUHA BINTI MOHAMAD NASROL1, NOORASHIKIN MD SALEH1,*, TANUSHA DEVI A/P ELAN SOLAN1, NOR YULIANA YUHANA1, FARHANINI YUSOFF2 & SALIZA ASMAN3

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, University Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia

 

Received: 22 November 2023 /Accepted: 3 April 2024

 

Abstract

Environmental toxicity from rapid industrialization raises concerns about water pollution caused by industrial waste and urban sewage. Aquatic macrophytes, such as the Azolla species, have shown promise in absorbing heavy metals and nutrients from water. This study introduces a novel approach by evaluating Azolla Microphylla and lemna minor as an economical adsorbent for copper removal from rivers. Moreover, this study stands out by conducting thorough characterization analyses. The adsorbent material underwent XRD, SEM, BET, and FTIR analyses after being crushed and sieved to 1-2 mm. Copper was extracted from river water using UV-Vis detection at 285 nm. Optimal conditions for adsorption were determined at pH 4, 30 minutes of contact time, and 0.4 g of adsorbent. Copper concentrations in the Sungai Petani, Sungai Selangor, and Sungai Langat ranged from 2 mgL-1 to 5 mgL-1. Azolla proves effective as a copper adsorbent due to its simplicity in sample preparation, time-saving benefits, cost-effectiveness compared to conventional systems, and high copper recovery rate. By successfully removing copper, a prevalent heavy metal contaminant in industrial waste and urban sewage, this research contributes to achieving Sustainable Development Goal 6 for clean and safe water supplies.

 

Keywords: Adsorbent; characterization; copper; river water; UV-Vis analysis

 

Abstrak

Kesitotoksikan alam sekitar akibat industrialisasi pesat menimbulkan kebimbangan mengenai pencemaran air akibat sisa industri dan kumbahan bandar. Makrofit akuatik, seperti spesies Azolla, telah menunjukkan potensi dalam menyerap logam berat dan nutrien daripada air. Kajian ini memperkenalkan pendekatan baharu dengan menilai Azolla microphylla dan Lemna minor sebagai bahan penjerap yang ekonomi untuk menyingkirkan kuprum dari sungai. Selain itu, kajian ini menyerlah dengan menjalankan analisis pencirian yang teliti. Bahan penjerap menjalani analisis XRD, SEM, BET dan FTIR selepas dihancurkan dan diayak hingga 1-2 mm. Kuprum diekstrak daripada sampel air sungai menggunakan pengesanan UV-Vis pada 285 nm. Keadaan optimum untuk penjerapan ditentukan pada pH 4, 30 minit waktu sentuhan, dan 0.4 g penjerap. Kepekatan kuprum di Sungai Petani, Sungai Selangor dan Sungai Langat berkisar antara 2 mgL-1 hingga 5 mgL-1. Azolla terbukti berkesan sebagai penjerap kuprum kerana cara penyediaan sampel yang mudah, jimat masa, berkos efektif berbanding sistem konvensional, serta kadar pemulihan kuprum yang tinggi. Dengan berjaya menyingkirkan kuprum, pencemar logam berat yang biasa terdapat dalam sisa industri dan kumbahan bandar, kajian ini menyumbang kepada pencapaian Matlamat Pembangunan Lestari 6 untuk bekalan air bersih dan selamat.

 

Kata kunci: Air sungai; analisis UV-Vis; kuprum; pencirian; penjerap

REFERENCES

Abba, M.U., Man, H.C., Azis, R.S., Idris, A.I., Hamzah, M.H. & Abdulsalam, M. 2021. Synthesis of nano-magnetite from industrial mill chips for the application of boron removal: Characterization and adsorption efficacy. International Journal of Environmental Research and Public Health 18(4): 1400. doi:10.3390/ijerph18041400

Bianchi, E., Biancalani, A., Berardi, C., Antal, A., Fibbi, D., Coppi, A., Lastrucci, L., Bussotti, N., Colzi, I., Renai, L., Scordo, C., Del Bubba, M. & Gonnelli, C. 2020. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Science of the Total Environment 746: 141219. doi:10.1016/j.scitotenv.2020.141219

Bononi, F.C., Chen, Z., Rocca, D., Andreussi, O., Anastasio, C. & Donadio, D. 2020. Bathochromic shift in the UV-visible absorption spectra of phenols at ice surfaces: Insights from first-principles calculations. The Journal of Physics Chemistry A 124(44): 9288-9298. DOI: 10.1021/acs.jpca.0c07038

El-Naggar, N.E.A., Hamouda, R.A., Saddiq, A.A. & Alkinani, M.H. 2021. Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. Scientific Reports 11: 3555. doi:10.1038/s41598-021-82827-8

Fikirdeşici-Ergen, Ş., Üçüncü-Tunca, E., Kaya, M. & Tunca, E. 2018. Bioremediation of heavy metal contaminated medium using Lemna minor, Daphnia magna and their consortium. Chemistry and Ecology 34(1): 43-55. doi:10.1080/02757540.2017.1393534

Gaggelli, E., Kozlowski, H., Valensin, D. & Valensin, G. 2006. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chemical Reviews 106(6): 1995-2044. doi:10.1021/cr040410w

Grassi, M., Kaykioglu, G., Belgiorno, V. & Lofrano, G. 2012. Removal of emerging contaminants from water and wastewater by adsorption process. In Emerging Compounds Removal from Wastewater, edited by Lofrano, G. SpringerBriefs in Molecular Science Dordrecht: Springer.

Gümüş, D. & Gümüş, F. 2019. The use of a wetland plant as a new biosorbent for treatment of water contaminated with heavy metals: Nonlinear analyses, modification, competitive effects. Environmental Technology and Innovation 16: 100483. doi:10.1016/j.eti.2019.100483

Guo, X., Li, M., Liu, A., Jiang, M., Niu, X. & Liu, X. 2020. Adsorption mechanisms and characteristics of Hg2+ removal by different fractions of biochar. Water (Switzerland) 12(8): 2105. doi:10.3390/W12082105

Hevira, L., Munaf, E. & Zein, R. 2015. The use of Terminalia catappa L. fruit shell as biosorbent for the removal of Pb(II), Cd(II) and Cu(II) ion in liquid waste. Journal of Chemical and Pharmaceutical Research 7(10): 79-89.

Ibrahim, W.M., Hassan, A.F. & Azab, Y.A. 2016. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian Journal of Basic and Applied Sciences 3(3): 241-249. doi:10.1016/j.ejbas.2016.07.005

Jayasundara, P. 2022. Wastewater treatment by azolla: A review. Diyala Agricultural Sciences Journal 14(1): 40-46. doi:10.52951/dasj.22140105

Jones, B.O., John, O.O., Luke, C., Ochieng, A. & Bassey, B.J. 2016. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. Journal of Environmental Management 177: 365-372. doi:10.1016/j.jenvman.2016.04.011

Jung, K.W., Lee, S.Y., Choi, J.W. & Lee, Y.J. 2019. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chemical Engineering Journal 369: 529-541. doi:10.1016/j.cej.2019.03.102

Keawkim, K. & Khamthip, A. 2018. Removal of Pb2+ ion from industrial wastewater by new efficient biosorbents of oyster plant (Tradescantia spathacea steam) and Negkassar leaf (Mammea siamensis T. Anderson). Chiang Mai Journal of Science 45(1): 369-379.

Lee, H.W., Cho, H.J., Yim, J.H., Kim, J.M., Jeon, J.K., Sohn, J.M., Yoo, K-S., Kim, S-S. & Park, Y-K. 2011. Removal of Cu(II)-ion over amine-functionalized mesoporous silica materials. Journal of Industrial and Engineering Chemistry 17(3): 504-509. doi:10.1016/j.jiec.2010.09.022

Liu, Y. & Kim, H.J. 2017. Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors (Switzerland) 17(7): 1469. doi:10.3390/s17071469

Masood, F. & Malik, A. 2015. Single and multi-component adsorption of metal ions by Acinetobacter sp. FM4. Separation Science and Technology (Philadelphia) 50(6): 892-900. doi:10.1080/01496395.2014.969378

Milicevic, S., Boljanac, T., Martinovic, S., Vlahovic, M., Milosevic, V. & Babic, B. 2012. Removal of copper from aqueous solutions by low cost adsorbent-Kolubara lignite. Fuel Processing Technology 95: 1-7. doi:10.1016/j.fuproc.2011.11.005

Mohd Salim, R., Khan Chowdhury, A.J., Rayathulhan, R., Yunus, K. & Sarkar, M.Z.I. 2016. Biosorption of Pb and Cu from aqueous solution using banana peel powder. Desalination and Water Treatment 57(1): 303-314. doi:10.1080/19443994.2015.1091613

Naghipour, D., Ashrafi, S.D., Gholamzadeh, M., Taghavi, K. & Naimi-Joubani, M. 2018. Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: A dataset. Data in Brief 21: 1409-1414. doi:10.1016/j.dib.2018.10.111

Nawaz, M.S., Ferdousi, F.K., Rahman, M.A. & Alam, A.M.S. 2014. Reversed phase SPE and GC-MS study of polycyclic aromatic hydrocarbons in water samples from the River Buriganga, Bangladesh. International Scholarly Research Notices 2014: 234092. doi:10.1155/2014/234092

Norseyrihan, M.S., Noorashikin, M.S., Adibah, M.S.N. & Yusoff, F. 2016. Cloud point extraction of methylphenol in water samples with low viscosity of non-ionic surfactant Sylgard 309 coupled with high-performance liquid chromatography. Separation Science and Technology (Philadelphia) 51(14): 2386-2393.

Parida, U., Bastia, T.K. & Kar, B.B. 2017. A study on the water absorption efficiency of porous silica gel prepared from rice husk ash. Asian Journal of Water, Environment and Pollution 14(1): 83-86. doi:10.3233/AJW-170010

Park, R., Kim, G., Shen, L., Hong, M. & Navarro, A.E. 2020. Batch adsorption of heavy metals onto chai tea residues for the bioremediation of contaminated solutions. Current Topics in Biotechnology 8: 51-62.

Phuengphai, P., Singjanusong, T., Kheangkhun, N. & Wattanakornsiri, A. 2021. Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Science and Engineering 14(4): 286-294. doi:10.1016/j.wse.2021.08.003

Şahan, T., Ceylan, H., Şahiner, N. & Aktaş, N. 2010. Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresource Technology 101(12): 4520-4526. doi:10.1016/j.biortech.2010.01.105

Saleem, J., Bin Shahid, U., Hijab, M., Mackey, H. & McKay, G. 2019. Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery 9(4): 775-802. doi:10.1007/s13399-019-00473-7

Semerjian, L. 2018. Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: Equilibrium, kinetic, and thermodynamic studies. Environmental Technology and Innovation 12: 91-103. doi:10.1016/j.eti.2018.08.005

Soman, D., Anitha, V. & Arora, A. 2018. Bioremediation of municipal sewage water with Azolla microphylla. International Journal of Advanced Research 6(5): 101-108. doi:10.21474/ijar01/7012

Sulaiman, S., Azis, R.S., Ismail, I., Man, H.C., Yusof, K.F.M., Abba, M.U. & Katibi, K.K. 2021. Adsorptive removal of copper (II) ions from aqueous solution using a magnetite nano-adsorbent from mill scale waste: Synthesis, characterization, adsorption and kinetic modelling studies. Nanoscale Research Letters 16: 168. doi:10.1186/s11671-021-03622-y

Taki, M., Iyoshi, S., Ojida, A., Hamachi, I. & Yamamoto, Y. 2010. Development of highly sensitive fluorescent probes for detection of intracellular copper (I) in living systems. J. Am. Chem. Soc. 132(17): 5938-5939.

Tian, W. & Fan, Z. 2012. Magnetic solid-phase extraction based on AAPTS/Fe3O4 nanoparticles for the determination of trace Cu and Pb in environmental samples coupled with graphite furnace atomic absorption spectrometry. Atomic Spectroscopy 33(1): 36-40. doi:10.46770/as.2012.01.006

Uogintė, I., Lujanienė, G. & Mažeika, K. 2019. Study of Cu (II), Co (II), Ni (II) and Pb (II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent. Journal of Hazardous Materials 369(February): 226-235. doi:10.1016/j.jhazmat.2019.02.039

Wu, S.S., Yang, H., Guo, F. & Han, R.M. 2017. Spatial patterns and origins of heavy metals in Sheyang River catchment in Jiangsu, China based on geographically weighted regression. Science of the Total Environment 580: 1518-1529. doi:10.1016/j.scitotenv.2016.12.137

Zazouli, M.A., Balarak, D., Mahdavi, Y. & Kariminejad, F. 2014a. The application of Azolla filiculoides biomass in acid blue 15 dye (AB15) removal from aqueous solutions. J. Bas. Res. Med. Sci. 1(1): 29-37.

Zazouli, M.A., Mahvi, A.H., Dobaradaran, S., Barafrashtehpour, M., Mahdavi, Y. & Balarak, D. 2014b. Adsorption of fluoride from aqueous solution by modified Azolla filiculoides. Fluoride 47(4): 349-358.

Zhao, Z., Li, L., Geleta, G.S., Ma, L. & Wang, Z. 2017. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for efficient removal of water-soluble dyes. Scientific Reports 7: 7878. doi:10.1038/s41598-017-08220-6

Zhu, J., Huang, Q., Pigna, M. & Violante, A. 2012. Competitive sorption of Cu and Cr on goethite and goethite-bacteria complex. Chemical Engineering Journal 179: 26-32. doi:10.1016/j.cej.2011.07.011

 

*Corresponding author; email: noorashikin@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous